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Abstract
The problem examined is that af the propagation ofa radar pulse in a random medium. The
model developed takes into account, successively, the dispersivity of the medium, the influence
of the earth ’t magnetic field andfluctuatians in the electron density of the medium.
1. INTRODUCTION
The model described applies to propagation in ionized media. The first part looks into the
effects of the Total Electron Content (TEC) along the path of propagation, the dispersivity of
the medium and the influence of the magnetic üeld.
In the second part, the medium is described by the spectrum density of its index. The
computations give the value of the two position two frequency autocorrelation function of the
transmitted field. From this were deduced the distances of spatio-frequential coherence of the
medium. The signal intensity scintillation rate was computed for a low fluctuation medium.
2. DISPERSIVITY OF THE MEDIUM
Since a plasma is a dispersive medium, a signal of finite duration may be considered as a
sum of elementary waves which are propagated at different velocities. As they leave the
medium under consideration, the various components reoombine in a maxmer different to the
original combination, resulting in a signal distortion which must be evaluated to establish the
performance of radars whose beam on transmission and reception uavels through a plasma.
The plasma can be compared to a Filter whose frequency response is given by
H (w) = ¤><p<-v<¢¤))
with t (w) = 11 (w) +j B (w)
The term ot. (ut) characterizes losses by absorption through the plasma. The term D (0))
charactetizes the variation in t.he phase velocity of the wave examined, If E (œ) is the spectrum
of the transmitted signal, the spectrum of the signal after distortion from travelling through the
dispexsive medium is written 1
S (ot) = H (01) E (cu)
'I`l1e latter's tempora] representation can be obtained by taking the reciprocal Fourier transform
of S(m):
s(t) = L Il E (ux) H (ut) exp (jtm) dm
21:
Before detection, the received signal goes into a matched filter which is designed to
maximize the output signal to noise ratio and to carry out the compression function when the
signal sent is coded.
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After passing through a plasma, the received signa] is no longer the exact copy of the signal
sent and the matched filter ceases to function properly. This malfunction may become
particularly apparent with wide·band coded signals. From the hypothesis of white noise in the
reception ba.nd, the theory shows that the temporal response of the matched filter is given by
the formula:
p(z) =j‘ s (r)*e(t—t)dt
From the üequential point of view, the output signal specn·um from the filter is written :
S'<w> = K<¤>> K 5 (w)
K (0)) and Ko (tu) are the spectmms of transmitted and received signals S(t) and e(t).
The tempoial response of the matched filter is thus given by the formula :
1 · .
p (t) = — f K(n>) K 0 (01) exp (Jan) dw
2 rt
In the event that s (t) is the signal that has travelled through the plasma, one may write :
p w = è [ |E<«»>I 1 H <«»> exp <1«»¢> dw
2 Il
Depending on the analytical form of the signals studied, either the time or frequency re-
presentations may prove more advantageous in calculating tl1e output signa] from the matched
filter, as both represemations arc equivalent from a theoretical point of view.
If we restrict ourselves to the case of a collision-free plasma and in the absence of magnetic
field, attenuation by absorption may be considered as negligible and the only relevant factor is
dispersion caused by phase velocity variation in tl1e electromagnetic wave depending on
frequency. One may therefore write :
H<¤>) = exp ( -i B (¤>)>
In a ©ollision—free plasma, the index value is :
n = (l_(fc/D2) x/1
f C is the frequency (critical frequency) of the plasma, `whose corresponding pulsation
is :
tu C : N e 2 /m s 0
N is the number of electrons per volume unit.
If we assume that carrier frequency is much higher than resonanee frequency and that the
signal pass—band is weak in comparison to the latter, it is legitimate to approximate tl1e term
B(tn) eharacteristic of the dispersion of` the medium by a second order Taylor series expansion :
« 1
01 — ut
B(ül)=B(<¤ o)+B' ((1) o)(€0·€¤o)+
where wo is the carrier frequency pulsation.
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The terms B` and B" can be obtained by considering the optical path which is given in first
approximation by 2
S t
__ 1 f e 2
it (fît f) tt
S i
ln these conditions, the phase rotation on the path can be written in the light of the formula
which gives the plasma resonance frequency :
e 2 N
A¢:2(g2.gl) ..;
G 2 m e 0 c co
In this expression, the first term corresponds to the phase shift of a wave normally
propagated in a vacuum, while the second term gives the additional phase shift associated with
the presence of plasma. NT is the total electron content. By derivation with respect to 0) we
obtain the term [i' of the development of [3(<n) 1
B, dA¢ _ St-St + €’NT
dw C 2 m e 0 c tn Ã
This magnitude has the dimension of a time : the first term corresponds to the normal delay
associated with the propagation of electromagnetic waves in a vacuum, and the second term to
the delay associated with group velocity in plasma.
By a further derivation with respect to 0) we obtain :
B,._ =î2A¢ _ ¤’NT
dw 2 2 m e 0 c œ Ã
This magnitude has the dimensions of a time squared.
In the context of these approximations, the temporal representation of the signal after
passing through the plasma is given by 2
s(t) = exp(jc00t)s1(t*)
and the output of the matched filter is given by: '
pû) = €XP(Ã(·‘)0î)P t <¤*)
with t* = t — |3'
s ,(t)=Lf E(<»+w.,)exp(_i (B" cn 2/2+wt)dœ
21t
p 10):À.f |E(m+m(,)| 2exp(j ([i"œz/2+wt)d<n
21:
The effect of the plasma is thus characterized by the terms [T (wo) and B" (mo). The first
reflects the group delay linked with propagation in the medium and the second reflects
dispersivity. These two terms are expressed solely and in a simple manner in relation to the
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total electron content, which can be easily computed once the plasma electron distribution is
known.
3. INFLUENCE OF THE MAGNETIC FIELD
The properties of the plasma are profoundly altered in the presence of a magnetic Held.
Apart from the resonance frequency f, which was introduced previously during the study of
radar signal distortion by a plasma in the absence of magnetic field, we need to consider the
cyclotmn frequency given by :
e H 0
f b = î
2 1C m
f b = 1.4 Mhz for the earth‘s magnetic field.
This frequency corresponds to electron rotation which, in the presence of a magnetic field,
describe a circular trajectory under the influence of the electrical field. ’l`he medium becomes
doubly refractive and two circular polarized waves are propagated with different velocities
according to their direction of polarization. A wave whose elecuic field vector turns in the
reverse direction to the direction of rotation of the electrons in the plasma is called an ordinary
wave. Otherwise, the wave is called extraordinary.
We know that any wave in plane polarization can be broken down into two circular waves
polarized in the reverse direction to each other. The result of this is that as the two waves travel
through a plasma in the presence of a magnetic field, they will have two different phase angle
rotations. As they leave the plasma, these two waves recombine to give a wave with plane
polarization but whose electrical Held vector has changed by a certain angle compared with the
direction of the original vector: this phenomenon is characteristic of the Faraday effect. At high
frequencies the angle of Faraday rotation is given by the formula :
cu s “
1‘)((1))= -%1 wîcosyds
2 c or = t
7 is the angle between the magnetic field and the direction of propagation. ln first
approximation, it is legitimate to remove yfrom the integral on the basis that this angle remains
constant on the path of a ray.
On the basis of this approximation, the Faraday angle can be expressed simply in
accordance with the total electron content :
2
15 (0;): L2 N T COM
2 m c E 0 tn
Since the frequencies under consideration are always large in relation to the plasma's cut-off
frequency, an approximation of 1*) (ut) can legitimately be performed by a frrst order Taylor
series expansion :
1‘>(¤>> = 15 (wo) + ü`(w¤)(w-wo)
By deriving the expression which gives the Faraday rotation., we obtain 2
, C 2 (JJ la
19 (œ)= N Tcosy
2 m c E 0 tn
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This frequency corresponds to electron rotation which, in the presence of a magnetic field,
describe a circular trajectory under the influence of the electrical field. ’l`he medium becomes
doubly refractive and two circular polarized waves are propagated with different velocities
according to their direction of polarization. A wave whose elecuic field vector turns in the
reverse direction to the direction of rotation of the electrons in the plasma is called an ordinary
wave. Otherwise, the wave is called extraordinary.
We know that any wave in plane polarization can be broken down into two circular waves
polarized in the reverse direction to each other. The result of this is that as the two waves travel
through a plasma in the presence of a magnetic field, they will have two different phase angle
rotations. As they leave the plasma, these two waves recombine to give a wave with plane
polarization but whose electrical Held vector has changed by a certain angle compared with the
direction of the original vector: this phenomenon is characteristic of the Faraday effect. At high
frequencies the angle of Faraday rotation is given by the formula :
cu s “
1‘)((1))= -%1 wîcosyds
2 c or = t
7 is the angle between the magnetic field and the direction of propagation. ln first
approximation, it is legitimate to remove yfrom the integral on the basis that this angle remains
constant on the path of a ray.
On the basis of this approximation, the Faraday angle can be expressed simply in
accordance with the total electron content :
2
15 (0;): L2 N T COM
2 m c E 0 tn
Since the frequencies under consideration are always large in relation to the plasma's cut-off
frequency, an approximation of 1*) (ut) can legitimately be performed by a frrst order Taylor
series expansion :
1‘>(¤>> = 15 (wo) + ü`(w¤)(w-wo)
By deriving the expression which gives the Faraday rotation., we obtain 2
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The Faraday effect is particularly apparent for low frequencies of the band in question,
which in practical terms necessitates circular polarized reception. As the plasma‘s electron
density increases, the Faraday effect plays an increasingly significant role, even at high
frequencies.
Thus, at a.n emission frequency of 4GHz, for a total electron content equal to 100 times that
of a normal ionosphere, the Faraday rotation is 2.2 radians (126 degrees), which involves
circular polarized reception.
In the case of circular polarired reception, the distortion of the radar signal in the presence of
the earth's magnetic field is the same as in the absence of a magnetic field. It thus depends only
on the group delay and on the plasma‘s dispersivity term. The previously established
fomialism remains valid.
In the case of plane polarization reception, the temporal response on leaving the matched
tilter is written 2
p (t) = % I cos (o(w)) |E(m)| ZH (ru) exp (io1t)d0J
1t
E (tu), r`} (ru), H (co) are the specuum of the transmitted signal, the Faraday rotation angle
and the plasma‘s frequency response,
By using the same computation technique as in the absence of a magnetic field, for the
matched filter’s temporal response we obtain the expression : _
r<=¤ ..¤ -¤ ..> .
p(r)= [e’°° J(t*+1‘)') +e 'JM J(t*—r°>')]
4 1r
with :
.. 1
J<t>=l IE<«»+w ·»>I 2 €xr><—i <%)—·wt))dw
This formula can be interpreted from a physical point of view by observing that it
corresponds to two pulses 2 ô' apart : one has a group delay equal to B' + ü' and the other a
group delay equal to [F - ô‘. These two pulses result from the pla.ne polarized wave splitting
into two circular polarized waves which are propagated at different velocities, one
corresponding to the ordinary wave and the other to the extraordinary wave.
By way of example, the formalism established above is applied to an unmodulated Gaussian
pulse. The pulse considered has the form 1
e(t) = exp(-bt1)exp(j0J0t)
This is au HF impulse which has a frequency of fu and a Gaussian amplitude.
After passing through the plasma in the presence of the earth's magnetic field, the signal
emerging from the matched filter is given by :
P(t) = R(1*) €Xp(i‘ï’(t*))
with
1 TE “ `T
R<r>=ït/î F: ’“<cn<2U,>+¢¤s(2<1>,))"Z
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pulse. The pulse considered has the form 1
e(t) = exp(-bt2)exp(j0J0t)
This is an HF impulse which has a frequency of fu and a Gaussian amplitude.
After passing through the plasma in the presence of the earth's magnetic field, the signal
emerging from the matched filter is given by :
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with
1 TC “ 1
R<t>=?i/K We 2** (ch(2U l)+cos(2<I> ,» "2

page 5 of 11
The Faraday effect is particularly apparent for low frequencies of the band in question,
which in practical terms necessitates circular polarized reception. As the plasma‘s electron
density increases, the Faraday effect plays an increasingly significant role, even at high
frequencies.
Thus, at a.n emission frequency of 4GHz, for a total electron content equal to 100 times that
of a normal ionosphere, the Faraday rotation is 2.2 radians (126 degrees), which involves
circular polarized reception.
In the case of circular polarired reception, the distortion of the radar signal in the presence of
the earth's magnetic field is the same as in the absence of a magnetic field. It thus depends only
on the group delay and on the plasma‘s dispersivity term. The previously established
fomialism remains valid.
In the case of plane polarization reception, the temporal response on leaving the matched
tilter is written 2
p (t) = % I cos (o(w)) |E(m)| ZH (ru) exp (io1t)d0J
1t
E (tu), r`} (ru), H (co) are the specuum of the transmitted signal, the Faraday rotation angle
and the plasma‘s frequency response,
By using the same computation technique as in the absence of a magnetic field, for the
matched filter’s temporal response we obtain the expression : _
r<=¤ ..¤ -¤ ..> .
p(r)= [e’°° J(t*+1‘)') +e 'JM J(t*—r°>')]
4 1r
with :
.. 1
J<t>=l IE<«»+w ·»>I 2 €xr><—i <%)—·wt))dw
This formula can be interpreted from a physical point of view by observing that it
corresponds to two pulses 2 ô' apart : one has a group delay equal to B' + ü' and the other a
group delay equal to [F - ô‘. These two pulses result from the pla.ne polarized wave splitting
into two circular polarized waves which are propagated at different velocities, one
corresponding to the ordinary wave and the other to the extraordinary wave.
By way of example, the formalism established above is applied to an unmodulated Gaussian
pulse. The pulse considered has the form 1
e(t) = exp(-bt1)exp(j0J0t)
This is au HF impulse which has a frequency of fu and a Gaussian amplitude.
After passing through the plasma in the presence of the earth's magnetic field, the signal
emerging from the matched filter is given by :
P(t) = R(1*) €Xp(i‘ï’(t*))
with
1 TE “ `T
R<r>=ït/î F: ’“<cn<2U,>+¢¤s(2<1>,))"Z

page 5 of li
The Faraday effect is particularly apparent for low frequencies of the band in question,
which in practical terms necessitates circular polarized reception. As the plasma‘s electron
density increases, the Faraday effect plays an increasingly significant role, even at high
frequencies.
Thus, at a.n emission frequency of 4GHz, for a total electron content equal to 100 times that
of a normal ionosphere, the Faraday rotation is 2.2 radians (126 degrees), which involves
circular polarized reception.
In the case of circular polarized reception, the distortion of the radar signal in the presence of
the earth's magnetic field is the same as in the absence of a magnetic field. It thus depends only
on the group delay and on the plasma‘s dispersivity term. The previously established
fomialism remains valid.
In the case of plane polarization reception, the temporal response on leaving the matched
tilter is written :
p (t) = i { cos (o(¢»)) |E(m)| ZH (rn) exp (io1t)d<¤
1t
E (tu), 1*} (tu), H (co) are the spectrum of the transmitted signal, the Faraday rotation angle
and the plasma‘s frequency response.
By using the same computation technique as in the absence of a magnetic field, for the
matched filter‘s temporal response we obtain the expression : _
i<=¤ ..¤ -¤ ..> .
p(r)= [e’°° J(t*+1‘)') +e ']°" J(t*—t°>')]
4 rt
with :
.. Z
J<t>=I IE<<»+m ol 2 ¢xp<—i <L§’——¤»o>¤<»
This formula can be interpreted from a physical point of view by observing that it
corresponds to two pulses 2 1‘>' apart : one has a group delay equal to B` + d' and the other a
group delay equal to B‘ - oi These two pulses result from the pla.ne polarized wave splitting
into two circular polarized waves which are propagated at different velocities, one
corresponding to the ordinary wave and the other to the extraordinary wave.
By way of example, the formalism established above is applied to an umnodulated Gaussian
pulse. The pulse considered has the form 1
e(t) = exp(-bt2)exp(j0J0t)
This is an HF impulse which has a frequency of fu and a Gaussian amplitude.
After passing through the plasma in the presence of the earth's magnetic field, the signal
emerging from the matched filter is given by :
p<t> = R<t*> ¤Xp(i‘I’(t*)>
with
1 TC “ 1
R<t>=?i/K We 2** (ch(2U l)+cos(2<I> ,» "2





page 6 of Il
2 .· . 2 .. ·
tpm : ont tyoiï , ii ,¤ .,,,,,g.
on 20. exp(-2Ul)+cos(2d>,)
2 ..
¢z=l+(b]3')2 ; Ul=b[}'t/ot ; d>,=B%-Q,-:-90
1 2 ..
W., = «»·.¤·»¤t-—¤¤=g¤¤·· +ïv' “
2 2 ot
These formulae show that travelling through plasma in the presence of a magnetic Held has
the following effects :
~ the signal envelope undergoes au amplitude distortion in relation to the Gaussian
form;
~ the maximum is attenuated ;
~ the phase follows a time-dependent complex modulation law ;
~ there exists an additional phase rotation linked to the group delay, to the dispersal term
and the Faxaday effect.
ln addition to these effects, a further global factor is the group delay time as with the
absence of the earth's magnetic field. ,
To illustrate this point, figure 1 shows a Gaussian impulse with a carrier frequency of 150
Mhz for an electron density equal to 10 times the electron density of the normal ionosphere.
The pass-band is 2 Mhz.
The Faraday rotation angle then has an average value of 157.5 radians, which corresponds
to a number of tums of the electrical field vector such that it is legitimate to consider the angle
60 as random and equally distributed between O and 21t. This is taken as the parameter. For
90 = 0° the impulse is symmetrical but may be considerably distorted (diminution of the
maximum amplitude and stretching over time). For 9,, = 45° the impulse is asymmetric. For
60 = 90° the impulse ls split with a passage through zero.
4. INCLUDING FLUCTUATIONS
A statistical model can be developed by including fluctuations in the mediums electron
density. This model has the advantage of providing analytical results for a certain number of
problems linked with propagation in ionized media. The parameters for these computations are
set in relation to the standard phase deviation of the signal transmitted, which represents the
extent of turbulence in the medium's electron density. The phase variance can be oomputed
with the expression 2
ai = 2 (MEN LL0 ofg
where L is the propagation distance within the ionized medium,
LO is the outer scale of the inhomogeneitles inside the medium,
cmi s the standard devlation of the electron density,
r e = 2.82. 10 `15 is the electron radius.
The problem data which enable the computations to be made are L, Lo, om and the medium
index spectrum density. Because of the influence of the eaxth's magnetic field, the ionized
medium is anisotropic. The spectrum density is expressed in accordance with a vectorial wave
number. This wave number is scalar if the medium is isotropic. Two models of Sp€CtI'Um
density can be used, the latter being approximatcd either by a power function or by Bessel
functions K0(k). These two models, largely equivalent for low values of the lt argument, are
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used to develop analytical computations. Depending on the problem studied, one or other of
these formulations is the best suited.
S. COHERENCE FUNCTION OF THE TRANSMITTED FIELD
As regards signal propagation, the medium is characterized by the autocorrelation function I`
of the field transmitted, usually designated as the coherence function.
1`(P1·P2»kr,kz·Z)= <U(P 1»k;»Z)U*(P z,kz.z)>
This function verifies the propagation equation which for a random medium can be written
in the following form :
8 l" j 1 1 2 2 1 1 2
———=—— ——V ——V 1`—2 —+— A 0 —— A
az 2( kî il ki zz) 7[ fr kï kg AN( ) klkz AN(P)
In this expression, A is the integral of the autocorrelation function of the medium index
along the line of propagation.
The corresponding solution can be obtained both in the case of plane wave and spherical
wave approximation.
Plgng yygyg typ; ggllrtjgn
In the case of plane wave type propagation, there is zero difference in the transverse
Laplacians. The equation is limited to the first and third terms. As a result, we obtain 2
F = aw »21¤2f21[L·L 2^~«<0>+ +(A <0> — A tp) 1]
° k 1 k 2 k 1 k 2 AN AN
i.e. depending on the phase variance and the structure function 2
o É) m É D du ( P, Z)
l` 3 = exp — É +
(D 0
The inclusion of the anisotropy of the medium is reflected in a multiplicative geometric
factor in the structure function,
Qgngrgl gglmign
The general solution of the propagation equation can be obtained without using the plane
wave approximation hypothesis. ln this case, the space variables are changed by means of the
sum and difference of the coordinates. By separating the variables, it can be shown that the
solution is expressed as the product of three functions. The first corresponds to the solution
obtained by the plane wave approximation. The other functions are solutions of differential
equations deduoed from the propagation equation.
The numerical models constructed show that for frequencies higher than the GHz, the
general solution is not signifïcantly different from the solution corresponding to the plane wave
approximation.
6. IMPULSE RESPONSE OF THE MEDIUM
The impulse response of the medium is the Fourier transform of the coherence function.
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wave approximation hypothesis. ln this case, the space variables are changed by means of the
sum and difference of the coordinates. By separating the variables, it can be shown that the
solution is expressed as the product of three functions. The first corresponds to the solution
obtained by the plane wave approximation. The other functions are solutions of differential
equations deduoed from the propagation equation.
The numerical models constructed show that for frequencies higher than the GHz, the
general solution is not signifïcantly different from the solution corresponding to the plane wave
approximation.
6. IMPULSE RESPONSE OF THE MEDIUM
The impulse response of the medium is the Fourier transform of the coherence function.
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ln the case of plane wave approximation, we obtain :
tn
RU) = Ã F<r>·z) ¤¤v<-(wat/¤,,\/É )2)
2 \/È
with ww, = wo x/É / 0,,,
The curves shown on figure 2 are plotted in reduced coordinates l"/0.1 mh and t * tn mh .
The peak value is 1 / ( Z \/ 1:), iie. 0.28. They are obtained with the expression of l"
corresponding to its general shape (spherical wave) for five values of the standard deviation of
the phase of the signal transmitred, from 5 radians to 7500 radians. The increase by cr .1; is
reflected in a flattening of the curve : reduction in the peak value and increase in the width. The
width at mid height varies from 2 for 5 radians to 9 for 7500 radians. For a medium with a
zero standard phase deviation, the impulse response obtained is a Dirac delta function
Corresponding to a medium with an irttinite pass-band. '
7. COHERENCE OF THE MEDIUM
The coherence distance and the ooherence band are deduced from the coherence function.
They are defined for the value F: exp ( - 1 ), i.e. 4.3 db. For tu d = 0, the coherence
distance lm is such thatD q>( isa., z) = 2.
Likewise, for p = 0 , the coherence band is equal to tu = tn œh .
The duration of temporal coherence in first approximation is equal to the quotient of the
spatial coherence distance (mh divided by the drift velocity of the medium
By designating H ( tu ) as the transmitted signal spectrum, the time signal received by the
reception antenna is :
Y(t,p)=21:fl`(w,z)|H(rn)| zexp(jmt)dm
Ifthe width of the incident spectrum is smaller than the value of the medium's coherence
band, the result is a deteriomtîon in the signal received which in this case leads to a temporel
widening and a distortion in the output signal.
8. SCINTILLATION RATE
The square of the scintillation rate is by definition equal to the intensity scintillation variance,
ceutred and sealed. lt is calculated from the expression of the fourth order moment l` 4 of the
transmitted field. The latter satisfiœ tl1e equation below deducecl from the propagation equation:
3 I` ‘ 1
T9'; = 'àvrrvq F4 ' ïF(*l·*'2) F4
L is the distance travelled inside the medium,
F is expressed by means of the structure function of the medium's index,
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r 1 and r 2 are two vectors in the plane transverse to the direction of propagation.
This equation can be solved numerically either by a ünite difference technique, or by a split
step technique. In the latter case, the solution for each step is obtained after a Fourier
transformation of l` 4 in relation to the space dimensions. In the case of weak fluctuations, an
approximated value of si is provided by the integral 2
s E :4} y0(K)sin “(1< “z*/21«c¤s«·>)<1K
withz‘suchtl1atl/2* = l/z, +1/ zx
zr and zi are the distances from the ionized medium to the reception point and to the
observation point.
The angle 6 is the angle at the zenith. 'y¢ (K) is the spectrum density of the phase of the
signal uansmitted in the medium. After a change of variables and according to the phase
variance of the transmitted signal, we obtain :
S,_ Sx/`î¤È,1`(p/2) sm“v“ dv
4 · ‘ ,
t/7;-r((p·1)/2)t;‘” (1 + 2v*/§)""
with § = z* / (kL%cos0)
This integral is calculated numerically. ln the case of an anisotropic medium, the integral to
be computed is :
4 b C · 2 2
Si: 21 î 2 zs1n(K Z) 2 /2dK
(21;) [q,,+AKX+BKxKy+CKy]*’
where a and b are the average dimensions of the large and small axis of the ellipses forming
the irregularities of the medium. This expression is calculated by ignoring qâ = 4 nz / Li,
in front of the other denominator terms, given that the essential eonuibution to the scintillation
rate comes from low values of K, The calculation is performed after the vector K has been
rotated in order to remove the term in K X K y, and then shifting to polar coordinates. The
integrals obtained are also calculated numerically.
The simulation results are presented in tigure 3 for values of a and b set respectively at 5 km
and 3 km. ln the light of the computation assumptions, the values of S 4 obtained in the case
of an anisotropic medium are only meaningful for high values of Lo.
9. CONCLUSION
The chief mechanisms affecting the propagation of impulse signals in an iouized medium
were studied, Priority was given to analytical calculations in the formalism developed in order
to put a ügure on the signiftcance of the phenomena depending on the parameters of the
problem,
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