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ABSTRACT

The propagation of signals across the ionosphere is
affected in two ways. The average variation in the index
of the medium creates propagation errors: distance,
angle, Doppler, etc. Fluctuations in electronic density in
the medium, and consequently in the index, create
scintillations. The latter are related to the characteristics
of the inhomogeneities in the medium. In the following
article we will set out a model representative of these
inhomogeneities allowing calculation of the
scintillations of transmitted signals.

1. INTRODUCTION

Inhomogeneities in the ionosphere are essentially a
nighttime phenomenon, occuring at equatorial (-20° <<
20°) and polar (> 55°) latitudes, and within the F layer
(300 km << 500 km). The creation of these
inhomogeneities is the result of different mechanisms.
The resulting production of irregularities is caused by:

- the amplification of local instabilities in the F
region;

- fluctuations in the electric field;

- hydromagnetic waves created above the ionosphere
which propagate up to the F region;

- highly energetic particles located in the upper part of
the F region.

These irregularities develop under the effect of
instability mechanisms (ExB gradient drift, streaming
nstabilities (Kelvin Helmholtz), Rayleigh Taylor, ctc.).
Characteristic dimensions and different growth rates
correspond to each of the existing processes. The overall
problem is very complex, therefore we have restricted
the following analysis to the most representative case in
order to highlight the key elements of the problem.

The first part of this article describes two approaches
used to model the inhomogeneities. The initial approach
is based on the development of a physical model. The
clectronic density in the medium and its fluctuations are

* This work was done under ESTEC contract n® 11437 /
95 /NL /NB

calculated by solving the medium's fluid equations. The
sccond approach is focused on applications and relies on
a statistical analysis.

The physical model is composed of two sub-models
corresponding to developments to the first and the
second order. The first order model provides the average
value of the electronic density in the ionosphere between
100 and 1500 km altitude. The second order model is
based on the same principle but here a more precise
description of the physical phenomena has been
introduced in order to highlight the development of
inhomogencitics in the medium.

An analysis of the performances of the two physical
models is then carried out, especially with regard to the
scale of the inhomogeneities” dimensions required for
telecommunication applications.

The second part of this article presents an applications-
oriented model. It is based on a synthesis of
inhomogeneities using the statistical characteristics of
the latter. The related CPU time is minimal. This model
can be used to carry out parametric studies and to rapidly
assess the influence of homogeneities on the signal
propagation. In particular, it can be used in a
propagation code to calculate the amplitude of
scintillations in the transmitted signal, and to deduce the
margins (o be included in calculation of the budget link
for a given confidence level. An example of this
calculation is presented at the end of the paper.

2. PHYSICAL MODEL
2.1. First order model

As a first approximation, within the range of altitude in
question, there exists three specics in the medium: O,
N2 and O2, with O as the major constituent. Their
respeclive concentrations can be obtained by the MSIS
code. The numerical resolution applies to the calculation
of the density of the O+ ion. The electronic density is
assumed to be equal to this density, as the medium is
electrically neutral. The other two constituents are
nevertheless considered in the calculation of electron ion
recombinations.
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The O+ density is obtained by solving the medium's
fluid equations: continuity, momentum and energy. The
equations are as follows:

dN; 2 2 [ Njv;
_d-i‘_i=Pi-Li-NidWVd-Ba_S- lBl

where Pi and Li are the production and loss rates for O+
V4 is the drift velocity

V; is the ion velocity

B is the earth's magnetic ficld.

Momentum equation

1

Vi = Vp = = —m—
1 n
m; Vip

[ﬂv N; +Xley Ne +k V (T +Tc)-mig]
N; Ne

where Ti and Te are the electronic and ionic temperatures
and Vn is the neutral wind velocity.

Solving these equations provides us with a parabolic
equation with respect to time.

Algorithm

A succession of meridian planes are taken into
consideration. The difference in longitude between these
planes must remain small compared to the time scale.
Among the simulation results presented hereafter, the
difference in longitude is equal to 2°, which corresponds
to a time step of 480 s due to the earth's rotation. The
reference axes in each meridian plane include the earth's
radius at the equator level, and the earth's magnetic field.
The meshing in the meridian plane forms symmetrical
curves with respect to the equator. The corresponding
altitude of each point along these curves is maximum at
the equator and decreases with latitude. Consequently,
the number of calculations can be lowered if we limit
the range of latitudes taken into account.

Input includes:

- densities of O, N2 and O2 provided by MSIS 90;
- neutral temperatures also provided by MSIS 90;
- production and loss rates of clectrons;

- neutral velocity;

- vertical drift velocity.

These data have been selected from average profiles.
Results could be more accurate if we could get real-time
data. Temperature profiles for ions and electrons can be
calculated by solving the energy equation. However, the
calculation can be made easier by using typically
temperature profiles and skipping the energy equation.
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These data have been selected from average profiles.
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The parabolic equation obtained is solved by the Crank-
Nicholson fully implicit scheme. At the bottom of the
mesh, the medium is assumed to be in photochemical
equilibrium. This sets the boundary conditions at the
lowest altitude. The matrix of the system is tridiagonal,
the solution is obtained by separating it into two

trigangular matrices.

An example of the result obtained is presented in figure
1. This figure shows the variation in electronic density,
as calculated by the IDEQ code (Tonospheric Density at
EQuatorial regions) developed by IEEA, versus local
time in Jicarmarca (Peru), which is located very near the
magnetic equator. A comparison of this result with
those provided by other sources is presented in figure 2.
The vertical profile at 12 noon local time is compared
with those provided by the IRI 90 (International
Reference Ionosphere) and PIM (Parameterized
Ionospheric Model) codes. The space step of the vertical
mesh used in this example is 10 km.

electronic density on a vertical
at Jicamarca (11,95 S ; 76,87 W)
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As compared to measurements at Jicamarca, the PIM
code seems to provide more accurate results. The IDEQ
results are very similar to PIM's at low altitudes. At the
F layer altitude and above some discrepencies appear
which can probably be explained by the differences in
the input data set.

2.2. Second order model

Drawing up a model to predict electronic density to the
second order relies on solving the medium's fluid
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equations as described earlier. This second order model
only takes momentum and continuity equations into
account.

Continyity equation
The continuity equation can be written as such:
2 N;

'E;L+V-(Ni"i) = Pi'Li

In what follows, we assume that the production and loss
rates of electrons are set at zero. The first hypothesis
corresponds to nighttime and the second to high
altitudes, typically the F layer and above.

Momentum equation
The momemtum equation is as follows:
Q. (E i
Vi-Vp = —’-(— -vixz)
v; \B

1 (0
+—1;:(E +Vi.V)

To solve the equations, the z-axis is aligned with the
earth's magnetic field. Moreover, we assume the terms
related to the gradients in electron and ion temperatures
are set at zero. The forces applied, which correspond to
the right hand side of the equation, are linked to the
local electromagnetic field. The two terms used in the
preceding equation apply to the ExB gradient drift
instability and to the Kelvin-Helmholtz instability
corresponding to magnetosphere-ionosphere coupling.

Methods

The preceding equations are transformed by using the
previously indicated hypotheses, and assume that the
electric field is of electrostatic nature. The equations are
written as a differential equation versus time, and an
elliptic equation.

The continuity equation can be written as:

aN_l[ad)aN

9t B| dy dx Ix dy

and the momentum equation as:

V.NVD = -BVa—N

nay

The local electric field is assumed as being aligned with
the x-axis. The medium is electrically neutral. The
terms linked to Kelvin-Helmholtz instability have been
omitted from the above equation.
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Algorithm

The analyzed area is rectangular. Periodical boundary
conditions are assigned to one of the coordinates, and a
Neumann boundary condition to the other coordinate.
When starting the calculation, the electronic density is
imposed on a specific point. It is assumed that the
electronic impulse is gaussian in the example presented.

The continuity and momentum equations are
successively resolved for each time step. The
momentum equation provides the scalar potential for
every point in the mesh. The values obtained are then
used in the continuity equation o calculate the
electronic densitics at the following time step.

In the simulations, the space stcp was set at 1 km on
one of the axes, and at 250 m on the other. This results
in solving large-size problems, which typically involve
several thousand points for analyzed areas representing
tens of km on cach of the axes. This is done by using
the Incomplete Cholesky Conjugate Gradient technique
(ICCG).

An example of result obtained after 200 s. is presented
below. Dimensions of the analyzed arca arc 25 km x 50
km. The medium appears to be striated and these
striations developed along the direction of vector E x B.
Increasing the analyss time leads to a breaking of these
strucyures into smaller ones.

20.0

10.0

0.0 20.0 40.0

2.3 Global model

The time and space scales used for the two types of
models, first order and second order, are very different,
thercby making it very difficult to consider a
simultaneous solution. However, if it is shown that
small scale structures do not influence the large scale
evolution, the schock capturing technique just described
in section 2.2 may be appropriate in a global approach
by refining locally the mesh both in terms of time and
space.

3. NUMERICAL MODEL

The measurements available make it possible to
estimate the probability of occurrence of
inhomogencities as a function of latitude, altitude and
time, as well as their dimensions. In addition, the
spectral density of fluctuations in electronic density can
be approximated by a power law, whose slope is
between -2 and -4. The lower cut-off frequency
corresponds to the mean value of the size of the
inhomogencities L. The related function is:

{
Yo (q) = -

(2 2\/2
(63 + @)
withqg = 27/ Ly

The autocorrelation function obtained by inverse Fourier
ransform can be calculated analytically. For propagation
problems through the medium, we look at phase
fluctuations in thc transmitted signal in a plane
perpendicular to the propagation dircction. Thesc phase
fluctuations arc dircctly rclated to electronic density
through:

0'% = C(Ar, )ZLLOO%R:

where L is the thickness of the medium,
and Cg is the medium'’s structure constant.

Moreover, the signal's phasc is a centered gaussian
random variable.

The electronic density fluctuations in the medium are
synthesized using a technique borrowed from numerical
filtering methods. The spectral density of the phase at
the output of the medium is equal to the product of the
Fourier transform of centered gaussian random variable
and the square root of the spectral density of the signal
we want to synthesize. The resulting random variable
meets the required conditions. The corresponding signal
is equal to the inverse Fourier transform of this product.
The following figure presents results obtained with a
slope of -3, a mean inhomogeneity size of 500 m and a
phase standard deviation equal to 0.76 radians
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Propagation in the medium can be calculated using the
phase screen technique, by alternating scattering and
propagation calculations. The related equation is the
parabolic equation, and the corresponding technique
applies regardless of the level of ionization within a
screen, It applies in particular to the propagation outside
the inhomogeneities layer.

An cxample of a transmitted signal after propagation
through an inhomogeneities layer 50 km thick, in the F
region is presented below.
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Fluctuations in the signal's intensity follow the m-
Nakagami probability law, where parameter m of this
law is equal to the inverse of the square of the
scintillation ratio S4 defined as:

S% = a%- 1

The variance of the intensity is calculated numerically
using the results obtained from the intensity of the
transmitted field. This makes it possible to define a
margin to be included in calculation of the budget link
for a given confidence level. The corresponding values

are presented for confidence levels equal to 85, 90 and
95%.
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fading margin {db)

S4

The results presented in this paragraph assume an
isotropic medium. The problem is 1D in a plane
perpendicular fo the propagation direction.

This calculation is also possible by assuming an
anisotropic medium. In this case, the spectral density of
clectronic density fluctuations in the medium is:

Cp

(af +Aq2 BaZ)""*

r(q) =

which includes two directions gx and qy and the ratio
B/A represents the anisotropic ratio.

The numerical synthesis technique is identical.
However, this time it introduces 2D Fourier transforms
(see figure 8), and we compare the results obtained for 2
valucs of the B/A ratio. In the first case, this ratio is
cqual to 1 and the medium is isotropic. In the second
case, the ratio is equal to 10.
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Propagation in the medium cart be calculated using the È ··' /
phase screen technique, by altemating scattering and   /
propagation calculations. The related equation is the Ut 4   /
parabolic equation, and the corresponding technique   ··' /
applies regardless of the level of ionization within a «-C; ‘,·' /
screen, lt applies in particular to the propagation outside te _9 /
the inhomogeneities layer. "*" xj
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An example of a transmitted signal after propagation Q
through an inhomogeneities layer 50 km thick, in the F
region isprescnted below. O _ O O , 5 1 _ O
S4
1 O
The results presented in this paragraph assume an
isotropic medium. The problem is lD in a plane
pcrpcndicular to the propagation direction.
^ This calculation is also possible by assuming au
tg anisotropic medium. In tl1is case, the spectral density of
—» electronic density fluctuations in the medium is:
I>«
o -15 _ Cp
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C (qu +A qi +B¤1y)
  I
gg} which includes two directions qx and qy and the ratio
···l B/A represents the anisotropic ratio.
Thc numcrical synthesis technique is identical.
_ 4 O However, this time it introduces 2D Fourier transforms
(see figure 8), and we compare the results obtained for 2
O _ 0 O _ 5 1 _ 0 values of the B/A ratio. ln the first case, this ratio is
equal to l and the medium is isotropic. In the second
È ( S . ) case, the ratio is equal to 10.
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The simulation results presented for the scintillation
ratio help quantify the influence that the medium's
anisotropy has on the scintillation ratio of the
transmitted signal, from which we deduce the
corresponding margin in the budget link. This result is
presented as a function of the distance from the
inhomogeneous medium to the receiver for average
values of the phase standard deviation of the transmitted
signal.

54 value vs free space propagation distance
phase standard deviaticn = 0.58 r.

2D isotropic
siweree+ 2D anigotropic

0.25 o

T T T T
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500.0

anisotropy ratio = 10

Generally speaking, the scintillation ratio increases with
distance for low valucs up 1o an asymptotic value equal
to 1 in the case of strong scintillations. The result of
figure 8 shows the variation in the scintillation ratio
linked to the medium’s atmosphere. Both curves merge
in the asymptotic regime, which is to be expected.

4, CONCLUSION

The model developed provides a few elements
concerning the structure of the medium and the
development of inhomogeneities. Broad-scale resolution
of the problem is confronted with numerical difficulties
due to the highly differing time and space steps of the
first and second order models. The extent of the
characteristics of the inhomogeneities may nevertheless
be evaluated by studying small and large scale problems
in a partially separated manner.

The results presented apply to the ExB gradicnt drift
instability. There nceds to be a systematic study of the
different types of instability likely to develop in the
medium, as this would provide statistical data on the
characteristics of the inhomogeneities at different
latitudes.

The numerical approach presented in paragraph 3 is, on
the other hand, very well adapted to telecommunication
problems, and provides faithful results as to the effects
observed, that is, as long as precise statistical
characteristics of the medium are known,

anisotropy ratio = 1
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values of the phase standard deviation of the transmitted 4. CONCLUSION
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