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ABSTRACT

The analysis presented in this paper focuses onpdloelation of the scattering cross-section oficanly rough canonical
three-dimensional objects. The scattering crosSeseof objects is calculated by the Small SlopepAgximation (SSA)

method. The SSA method was suggested by VoronoViech small parameter of the method, the roughsiese, differs

from those used in classical approaches sinceiitdispendent of the incident electromagnetic waxgile Second-order
terms in SSA method have been implemented in otolesbtain accurate results for a large range obpedo Specific
developments have been carried out for the TM edseh presents a singularity. In this paper we uiscthe theoretical
SSA solution. Calculations are presented for batlanzations of the electromagnetic field. Numelrisenulations with

higher order contributions of SSA method and comspas with published results will be discussecdis paper.

Keywords: Randomly rough scattering, surface scatteringtestag) cross-section, small slope approximatiormeuical
simulations.

1. INTRODUCTION

Much research has been done on the problem of s@ttering from randomly rough surfaces becauseanfy applications
in underwater acoustics, optics, radiophysics,aastronomy and solid state physics. Two approaskes suggestetf.

One is related to the development of numerical odghof calculating the diffraction wave fields fraurfaces of a given
shape. These methods consider different approadheamstructing a set of linear equations and sglthem numerically.
Computers allow now to solve problems of scatterirgm randomly rough surfaces, i.e. numerical dalions for
statistical ensembles of roughness. But numericalilations do not answer all questions : when wasier a three-
dimensional problem, dimensions of sets of lineprations can be too large.

The second approach concerns the development arfetiigal analytic methods describing scatteringlettromagnetic or
acoustic waves by rough surfaces both in detertigrasd statistical cases. But the scattering @mlfior rough surface has
no analytic exact solution for rough surface. Caghproximate analytic solutions to this problem £xisvo basic methods
were used before: the perturbation method whichalisl for small values of the Rayleigh parametke, tatio of roughness
height to the incident wavelength, and the KircHilagiproximation which is valid for small valuestbé ratio of wavelength
to curvature radius of the surface. In the Kirclitagdproximation, the boundary can be approximatedagh point by a
tangent plane, this theory assumes that the intenaof the acoustic or electromagnetic wave witb toughness is local.
These two classical approaches are useful, butdbpgnd on the way how the rough surface is destyibe., large or small
scale of roughness. A combination of these differeethods, called the two-scale approach, is asal.uBut this model is
inacurate for grazing angle scattering.

Two new approaches were suggested, one propos&bimnovich’, the other proposed by BaRfrThe aim of these
approaches is to develop a scattering theory whithuces to both classical theories when they acerate. These
approaches eliminate the composite roughness agprd@ronovich’s theory describes randomly-rougatsring on the
basis of a small parameter which is the roughnkgesin the case of a randomly rough surface, ghiall parameter is
defined as the ratio of the surface root mean req@MS) height to the surface correlation lengthe small slope
approximation is formulated as a series which isxgransion in power of slope.

In this paper, we examine the Small Slope Approkimmaof Voronovich. In the first part of the papeve present the
calculation of the first- and second-order of th&h slope approximation. We consider polarizedtetanagnetic wave: TE
case and TM case. Second order terms are implechémterder to obtain accurate results for a largege of slopes.
Therefore the SSA method applies not only to sslalbe profiles but also to significant values afpd. We consider a
perfectly conducting surface. In the second parthefpaper, scattered field intensity and bistedtar cross sections for



both TE and TM polarizations are calculated usimg $econd order of the small slope approximatidre problem is
limited to vector-wave scattering from three-dimienal randomly rough conducting surfaces with a $3&n roughness
spectrum. We consider the 3-D scattering problesméerefinements are made for the TM case and $péeifelopments
are carried out for the TM polarization case sitiie case presents a singularity. In this partgive a detailed derivation
of the calculation of the scattered field intendgy TE and TM cases. In the third part of the papemerical results for
scattering cross-section of randomly rough condgctilates for TE and TM cases are given using ¢icered order of the
small slope approximation. Comparisons with thé-iidve method of Bahar are presented. Finally,hia fast part we
attempt to give some insight into the calculatidrihe@ monostatic laser radar cross-section of ngoreplex objects with
randomly rough conducting surfaces.

2. SMALL SLOPE APPROXIMATION METHOD

The Small Slope Approximation gives a solution feave scattering both at small and large scalesiwithe single
theoretical scheme provided that surface roughhassmall slopes. In this part of the paper, werises the small slope
approximation method. A monochromatic plane wavpui$ationwis incident on the rough boundary. We assume(thait
are the horizontal and vertical coordinates of beeovation point, and thak,(gc), with g = (K2 - k3*? (Im q = 0) and
K=w/c, are the horizontal and vertical components ef Wavevector. We can notice thatand k are vectors. The
wavevectors in the incident and scattered direstimme respectively given byk+g,z and K -qz, wheref and z are
unitary vectors. The z-axis is directed downwaise index ‘0’ specifies the incident Wa\(go = qko). The incident and

scattered wavevectors may be imaginary and theréfiothe given formulation, we take into accourdrascent waves. We
assume that the uniform bidimensional half-plaredrairregular boundary z =rf(at its bottom. The incident field is given
by a plane wave of the form:

W, =0, exp(ik, I +ig,2) (1)
In the region z < min(In}), the scattered field is written as a superpasitf plane waves:
W= [ a9k ko) explic 1 - i, 2) de )
If the wave field is multicomponental, = ¢ , i = 1,...,N, components of electric and magniicl can be described gs.
The quantity 3,k.) is called the scattering amplitude (SA). In tlse of electromagnetic wave, the scattering anddits

described by a 2 x 2 matrix. In the following, p@ation indexes are omitted. Voronovich’s approachased on the effect
of horizontal and vertical translations of the augd profile h(), this leads to a SA of the form:

Sk.ko) = [ exf=ilk-ko) r +i(ay + ) Hr))P(k ko £) & ot &/(2m)? ®)
where,
Dk ko;&) = B(E)Po(k ko) +8(& = &:)P(k k& )N(E ) +B(E &1~ & J® [k ko3& & JHEJHE )+ .. (D)
h(€) is the Fourier transform of the roughness shape:

(E)=[ hir) e /(e ©)

@ is expanded in a functional Taylor series abq)h= 0 (h(§) = O is the Fourier transform of the flat surfacéhe
functional derivatives in the series are writteriuastion®,, to be determined. A final property &, is:

®,(k.ky;&,,..&,)=0 if any &(i=1,..n)=0 (6)
Following Voronovich, we can define new functioigi%1 forn=1:

(kK& &) =8, &, P (K kg & E L) )



where theCTJn are non singular iny & (i=1,..,n =0.
(4) becomes then :

Ok koi&) = 8(E)Bo(K, ko) + [ S(E~&.)Py(K,koi & )& N(E )&, @
+[ B(8 -8, ~&,)D,(k,ko: 1, E)E N(E JE N(E JE & 1+ ...
®n is bounded at alfl,, &, ..., thatis:
®,[<A, ©)
Since
[ ign(g)e* & =0Kr) (10)

The successive terms of the series (4) can beastihas quantities of ordeflh (' A, where 00h [k< 1.

Therefore, we have an expansion in small slope. flihetions ®n can be determined using a transition to the small
perturbation theory.

The expression of the scattering amplitude for peturbation is given by:
S(k*ko) = Vo(ko)é(k - ko) + Zi(qk%)]/z B(k’ko) f(k _ko) +( a q))l/zj. Ei(k Ko ’E-) *ﬁk _E-) 'ﬁi _ko) q (11)

Vo(K) is the reflection coefficient in specular directi We consider a perfectly conducting surface,piblarization states
are defined as following: the vertically polarizedhve is defined when vectdt lies in the plane of incidence, the
horizontally polarized wave is defined vhen vectbrlies in the plane of incidence and vectoris horizontal.E is
decomposed into two independent directions or pations, because there is no component in thettbreof propagation
k. The matrix B is a 2 x 2 matrix. It is defined by:

K?k.k,—k%*k, K2N.k xk,

B(k k ): Gk %o kko O I<ko (12)
TO K2N.k xk, _kk,
0o kK, kk,

B is a general matrix, arkdmay not lie in the plane of incidence : the comfagion which is described by the matrix B is a
general bistatic one. The matrix B given by:

B, (k,ko;&) = -20B(k &) B(E &) B(E k,) (13)

®n are determined after expanding the exponent imtheé small slope approximation theory and comgatiire result to
the small perturbation theory. We obtain the SSpamsion within the accuracy oflif)? :

Sk.k,) = _Z(QkQ%)Mj ex{-i(k -k,) r +i(a, +qo)h(r)){B(k ko)—iﬂ M(k ko £)h(E)e* OE} ¢/(en)? (1)

The expression for the matrix klk,; &) is:

M(k.ko;&) =B,(k.kok-&) +B,(k kyik, +&) —20B(k k) (15)



with
Q= —(qk + 00) (16)

3. SCATTERED FIELD INTENSITY
3.1. Bistatic intensity

The scattering surface is defined by its statistipaoperties, namely the height standard deviai@om the related
autocorrelation function. In the following both lealveen considered as Gaussian.

Equation (15) allows calculating the bistatic seditly cross section which is found to be :
20,9 ) ¢
(ANE (qéqkj [ et Rk koir) d/(2n)? (17

with function R (k ,k, ;r) defined as :

R(Kk,koir) = - 2| Bk k,) = Hk ko 0)f

+e_Q2(02_W(r))[ 5[ [M(kkoiE) (&) & & (18)
+(B(k ko) = F(k ko 10) + F{k koir))( Bk ko) = Hk ko 0)+ Hk ko ;r))*]
o is the height standard deviation and W)(is the related autocorrelation function withép &s Fourier transform,
and integral F is defined by :
Flkokoir) = ¢ [ M(K ko:E) S(E) ' & (19)

1% and 2° order solutions are calculated in the followindgieTcontribution of the F function is ignored in ti order
solution.

3.2. First order solution

The matrix of scattering coefficients is easilyaibed for a perfectly conducting material. In theident plane, these
coefficients, derived from the perturbation thearg found to be (12) :

TE:  B,,(k,ko)=-1 T™™: B (k.k) _ KoKk,
Ok %o
for the diagonal terms and :
By,(Kk. ko) =0 Bu(k.ko) =
for non diagonal terms.
The T order solution is obtained ignoring term M (anaisequently F). We obtain in this case :
R(k,kqir) =[B(k ko) [exp( Q o?- ) ex;é QZO'Z)] (20)

This expression is similar to the Kirchhoff approgition. However the geometrical factor is different



The case of imperfect conductors is more complitadetails of the calculation are not reproducethis paper. This case
has however been considered and simulation refsultae ' order approximation are reported in the next secti

3.2. Second order solution

TE case
Term B(k,k,) is equal to -1 for the TE casB,(k,k,;&) term (see eq. (13) is consequently :
B,(k.ko:&) =20, (21)
and subsequently for M :
M(k,k;8) = Zdyg + 0y~ Q (22)

The F(k,ko;r) integral providing the™ order contribution is calculated by FFT.

TM case

M term in this case is :

2 [[KP ko (k=E)][K? ~ko.(k-E)] +[K2—|<.(|<0 +E)[K?=ko (ko +E)]
Ax Y Q- Ok, v

M =

Q(K? -k.ko) (23)

1/2 1/2

with Qo = [K? -(k-&)?] and Qe = (K2 (Ko +&)? ]

The first two terms include a singularity. Theilatdation is briefly detailed hereafter taking tfiest one as an example.
The integral defined by :

[l B[k ko k8] ) i) @4
[Kz—(k—f,) ]

which appears in the calculation is singular fovdfues such that

K=k - §

This singularity is easily removed in both caseseail and complex values of the denominator usoryenient changes of
integration variables. The integral is then caltedanumerically.

The calculation of the term involving the squarerafdulus of M is more complicated. Correspondingresgsion is :



[K? k. (k- €)|[K* ~ko-(k - &)] +[K2—k.(ko+£)][K2—k0.(ko+§)]_Q

(K?—k.k,)| S(E) exig.r) g (25)
Oig i+

+00
I—m

The real variabl€ is extended to the complex plane, and the integrés performed in the compléxplane. Integration on
the real axis fron— o0 to 0 is equal to integration from 0 tb o . Consequently only the second one is considereshfter.

Jordan lemma applies on a large circle locatedhfatity provided the autocorrelation function vamés at infinity. The
contour considered is located in the first quadrénincludes the real axis, a part of a circlerdinity limited to a 45°
angular sector due to terms §f in the autocorrelation function, and a diagonatlmse the contour. The contributions
related to the two straight lines are equal. Theycalculated numerically on the diagonal whichsesses no singularity.

The integral possesses four branch-points for galue
Ok = 0 and Oy 2 = 0

The question of inclusion or not of these brancimsanside the integration contour relies on thpgysical meaning. They
are on the real axis.

Corresponding waves may be written ex;(+i q h(r)) :

1/2 1/2

with Uy = [K2 -(k-f)z] and Oipre = [K2 -(ko+€)2]

Real and imaginary parts of (qrea“qimag) must be such that terrgxr(—iqrealh(r)+qimag}(r)) vanishes at infinity and
corresponds to a progressive wave.

Complex plane &

Cut Cut

Figure 1: lllustrative example of the integration contour in the complex plane

The choice represented on figure 1 is conveniethtsimgs no additive contribution to the scattefieldi






4. NUMERICAL SIMULATIONS

Results presented include a comparison betw&emd 2° order approximations, some comparisons with ofhasished
results, cross polarization and backscatteringutations. Calculations have been performed on aregsample considering
consequently integration on a surface. Varighléthetai) is the incidence angle. Its sign is offeo® the sign of the
scattering angle, named theta. h is the heightlatandeviation. L is the height autocorrelationglén

Kh=1.29 / KL=7.31 / thetai=45°/ phi= 0°

slope 14°
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Figure 2 : Comparisons between 1% and 2™ order SSA approximation with Kirchhoff approximation.

SSA ' and 2° order results are very close as can be noticedignme 1 which corresponds to an example already
considered by Yang and Broschafhis can be also observed for the TM case andyfeater slopes. The results are
compared with the Kirchhoff Approximation (KA) rdsuPeak values are obtained for the specular tiinecThe results
significantly differs when departing from this diten specially for forward scattering at grazinmgkes.
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Figure 3 : Comparisons between TE and TM SSA and KA results

The second example (figure 3) corresponds to a passented by BaharResults perfectly agree with those he obtained.
The curves merge for the specular direction anetd@mn the polarization. The polarization depengelues not exist for
Kirchhoff Approximation. Only one sign is changedthis last case. The same remarks than in théquecase apply
regarding the discrepancies when increasing thitesicey angle.

Cross-polarized components calculation modifiessitegtering matrix coefficients. The correspondamgplitude vanishes
in the plane of incidence and increases with th@ath angle. Results presented on figure 4 hava bb&ined considering
a 45° angle between incident and scattering planes.
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Figure 4 : Cross-polarized terms
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Figure5: Scattering by a dielectric rough surface



The results presented on figure 5 applies to thee oaf dielectric materials. The discrepancies betw&irchhoff
approximation and small slope approximation are aignificant specially for forward scattering aaging angles.

5. SCATTERING CROSS-SECTION OF COMPLEX OBJECTS

In this part of the paper we present a method aftegng cross-section calculation for arbitrarynpbex shaped objects
with conducting rough surfaces. The definition weegcan be employed for polarized illumination kytioal or infrared
frequencies and can be extended to laser crossisethe development of laser radar (ladar) regumedelling softwares
to analyze ladar signatures. The first step towlaeddevelopment of a simulation of ladar signatsir@n accurate modelling
of the interaction of a laser wave with a rougleiféce because all real surfaces are rough for Veaees. In the previous
parts of this paper, we developed a wave scattéhiegry for randomly rough conducting surfaces Bag®n Voronovich's
Small Slope Approximation. With this theory, a 3sBattering problem can be resolved and the conipotat not time-
consuming. Now we discuss the statistical propertoé the height standard deviation we have intreducin our
calculations. We know that the deviation of a stef&rom the smooth reference surface is represdntede function )
of the previous parts. h is the height of the sigfiiom the reference surface ant the position vector on the reference
surface. The surface is assumed to be part of &incons random process which is described by th@sstal height
distribution p(h). p(h)dh is the probability of asurface point being at a height between h anddh.4n calculations of
scattering from randomly rough conducting surfadbs, height is assumed to be Gaussian. This asemptakes
calculations more tractable.

To verify the validity of the Gaussian assumptidrsarface height fluctuation, we used an atomicéamicroscope (AFM)
with a vertical and horizontal resolution of lekart 1 nm, these resolutions are much smaller themtident wave length
of a ladar in the near-infrared band (0.7 tpr), or in the 3- to 5wm band, or in the 8- to 13m band. In this paper, we
consider a steel sample. Analysis of AFM picturg () shows that the surface is composed of tumhness regions: a
randomly rough region and randomly occuring nargraoves, pits and sharp tips. Figure 7 shows theilgtion of the
surface heights of the steel sample. This figuregievidence for the validity of the assumptiont thiar steel sample
possesses a Gaussian distribution for the deviafidime steel surface from the smooth reference. Histogram of the steel
surface sample fits well to a Gaussian distribution

o - 2 ] S
Figure 6 : Atomic force microscope picture of Figure 7 : Description of the height distribution
a 40 umx 40 pmmetallic surface

- iy

The detectability of a target under laser illumioatmay be defined by a laser cross-section (LC&)an area intercepting
the amount of power which, if scattered uniformielall directions would produce a scattered povensity at the receiver
equal to that reflected by the target. The lasessisection is defined by:



LCS = (k/ ;) 4mr2 (26)

where | (watts / sterad) is the intensity incident ontduget, | (watts / sterad) is the reflected scattered radidensity and

r is the source to target distance. The laser egesson is defined in the far-field. Laser illuration is defined by a plane
wave. This theoretical analysis of a general 3Ddoeting rough-scattering configuration is a verffidlilt problem which
can not be solved with a numerical efficient algori. We know that the signal scattered by a comgleface contains two
components: a specular or coherent component, diftuse or incoherent component. In the far-fidlt, fast detectors, the
scattering cross-section is speckle-resolved. Hewewalculation of the coherent and incoherent aomepts of the
scattered electromagnetic field can be simplifiethie high frequency limit®*° The coherent field component is calculated
considering a Kirchhoff based approach in the slaedalirection. In the case of a monotatic ladar, the incident direction
is equal to the scattered direction, we define cgkzattering cross-section which is given for a astingoerfectly conducting
object by:

2 =Tp1P2 (27)

wherep; andp, are the radii of principal curvature of the objsorface at the specular reflection point. For geotly
conducting rough surface, the coherent field magédtermined from the average amplitude of the sadtfield, the phase
of this field is well determined. And this averagmes not contain the diffuse field. The cohereattsced field is given by
the product of the one-dimensional characteristicfion of the surface by the field scattered frmsmooth surface of the
same extent as the rough surface. And the backsogticoherent cross-section for a perfectly cotidgmbject is obtained
by:

2 conerent= TIP1 P2 X2 (-2 K) (28)
wherey is the one-dimensional characteristic functiothef surface, K is the incident wave number.

To determine the diffuse scattered field, it isewsary to consider the mean intensity of the seattéeld, because the
diffuse field amplitude averages to zero, this i do the rapidly varying phase of the diffusedielTo compute the
backscattering cross-section for the diffuse figld, propose to divide the surface of the perfectigducting object into
planar patches. The dimensions of the patches ach greater than both correlation length and intigdeavelength. The
incoherent scattering cross-section of a perfemtiyducting rough object is given by the superpasitf the incoherent
backscattering cross-section of each illuminatettipaMultiple scattering from the perfectly conduogt surface of the
object may be neglected when the radii of the dureaat any point on the surface are much largen tine incident
wavelength, the slope of the surface is much smadbn unit. The incoherent intensity scatterectbgh patch is calculated
using the small slope approximation introducecdhim previous chapters. The incoherent scatteredsfaale obtained by the
second-order SSA for the vectorial case. The cafiar of the incoherent field is performed only otke illuminated
region.

6. CONCLUDING REMARKS

We have developped the second-order small slopeoxipmation for the vectorial case and a perfectinaucting two-
dimensional surface. The validity of small slop@rximation is related only to the smallness ofdlopes of the roughness
and the small slope approximation is wavelengttrefrahdent. We have calculated the second ordereoéitiall slope
approximation to be more accurate for a large rafgdopes. We have investigated the singularitfethe function M for
electromagnetic scattering at a perfectly condgctamdomly rough surface and we have obtained xpeession of the
function in the TE and TM cases. The singularitéthe considered function are related to the afoit of surface waves.
We have compared the vectorial case of the snwdkeshpproximation with Bahar’s full-wave approximnatand Kirchhoff
approximation for two-dimensional conducting suefasatisfying Gaussian statistics. The SSA givesrkably accurate
results and the averaged expressions for the soatteross-section are numerically tractable. TS $s more accurate
than Kirchhoff approximation. We have analyzed lthekscattering cross-section of arbitrarily shapedectly conducting
randomly rough surfaces. The formulas of coheramt acoherent backscattering cross-section haven lwdxained
respectively with Kirchhoff approximation and Vomrich’s small slope approximation.
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