Analysis of Scintillations recorded in the equatorial regions

Y. Béniguel, J-P Adam, IEEA, Paris, France

B. Arbesser - Rastburg, ESA / ESTEC, Noordwijk, The Netherlands

A. J. Van Dierendonck, GPS Silicon Valley, Los Altos, California

Measurement campaign

• GPS receiver characteristics wrt scintillations

Correlation distances

Measurement Campaign

Receivers deployment in the equatorial regions

Institutions : U. of Rennes & Brest (Fr), DLR (Ge), GMV (Sp), ESA/ESTEC, CLS (Fr), IEEA (Fr)

Receivers in use

GSV 4004 : both phase & intensity : GPS + 3 GEOs Cayenne, Africa, Vietnam

Javad : both intensity & phase : GPS Indonesia , Canary Islands & Sweden

Data collection

Measurements from

N'Djamena (Tchad) (with support from ASECNA company) Cayenne (French Guyana) Douala (Cameroon) N'Djamena (october 2006) Provisory installation $371 299 \text{ samples} \rightarrow 29737 (S4 > 0.2) \rightarrow 2981 (multipaths removed)$ Only GPS satellites, no GEO at that time **3 GEOs may be tracked** Cayenne (same period of time) $392709 \text{ samples} \rightarrow 19099 (S4 > 0.2) \rightarrow 2322 (multipaths removed)$ GPS + 1 GEO

Douala (2004) GPS + 1 GEO

Phase vs intensity

S4 statistics

GPS receiver characteristics with respect to scintillations

Measuring Amplitude Scintillation

- Amplitude Scintillation
 - Measure GPS signal-plus-noise power
 - Remove, as well as one can, noise power
 - Relatively straight-forward
 - Some "detrending" issues separating scintillation fades from multipath fading – a detrending bandwidth issue
 - Averaging proves to be more stable than filtering, but results in higher S4 due to multipath fading

Measuring Phase Scintillation Effects

- GPS receiver must track signal phase using a phase lock loop (PLL)
 - Weakest link in a GPS receiver
 - Measurements include perturbations of receiver and satellite oscillators
 - These perturbations cannot be removed with "detrending"
 - Also include signal Doppler, multipath and ionosphere TEC (and oscillator frequency offset), that can be removed with "detrending"
 - Typically, measurement bandwidth is the PLL loop bandwidth
 - Wide bandwidth makes loop more sensitive to amplitude fading, and thus, loss of lock
 - Narrow bandwidth makes loop more robust, but filters out phase scintillation effects
- Loop can be configured to have narrow loop bandwidth, but still provide wide bandwidth phase data

 \bullet

PLL Model with Wideband Phase Estimator

General GPS Receiver Limitations in Scintillation Environment

Phase Scintillation

- Generally not a problem at L1
 - No worse than low-grade TCXO
- Severe problem for "semi-codeless" L2
 - Very narrow bandwidth PLL coupled with erroneous aiding with
 - L1 phase (doesn't agree with Doppler aiding)
- Amplitude Scintillation
 - Primary culprit for loss of phase lock at L1
 - Deep and long fades steal signal from PLL
 - Narrower bandwidth is better, but could require an better oscillator
 - False alarms from lock detectors during fades (apparent loss of lock)

Loss of data (symbols) from SBAS signals

GPS Scintillation Monitor Limitations in Scintillation Environment I

- Phase Scintillation
 - Can't measure scintillation at L2
 - Measurement limitations at L1 dominated by receiver oscillator
 - Typical receiver oscillator phase noise masks phase scintillation (See PSDs and plots in next charts)
 - Thermal Noise limitation is about 0.1 radian @ 30 dB-Hz
 - OCXO phase noise typically better than 0.05 radians
 - Limitation can be overcome by differencing phase between satellites
 - Creates a requirement for high-rate data collection and substantial post processing

Phase Noise PSD Comparisons

Antofogasta Phase Scintillation vs. TCXO Phase Noise

GPS Scintillation Monitor Limitations in Scintillation Environment II

- Amplitude Scintillation
 - High S4 can cause loss of phase lock
 - Of course, that is still information
 - S4 is still usually valid it is based upon non-coherent power measurements, at least for short to medium length fades
 - See state diagram
 - Multipath fading limits minimum S4 capability
 - Longer duration, but shallow fades
 - Can be detected and eliminated because multipath also causes code/carrier phase divergence – scintillation does not

Signal Tracking State Diagram

Thermal Noise (C/N₀) Effects on Scintillation Parameters

Correlation distances

Scintillation measurements over Brazil with 6 stations

• The circle of each IPP is proportional to the measured S4

 2 stations are almost collocated : distance = 100 km

Collocated stations (100 km)

- 1 week of measurements
- All visible GPS satellites are considered
- Computed correlation coefficient : 0.8

Correlation distance

- For a given satellite, the distance between the IPPs is approximately the same than the distance between the stations.
- The correlation coefficient between the S4 of 2 IPP is assumed to be a gaussian function of the distance : c = exp(-αd²)
- Since c = 0.8 for d = 100 km, the deduced correlation distance (c = 0.5) is about 175 km.

Scintillations extent : Brazil 2002 flux 190

Average extent 400 km

GPS + GEO : (Douala)

- All the affected satellites are in the same part of the sky.
- The width of this region is about 500 km at the F layer altitude.

CONCLUSION

• Constitution of the data base is on progress

 Links with GEO satellites (3 channels on GSV receivers), will help to derive the scintillation characteristics

• Assimilation technique is under development, mixing model and data in order to obtain a forecasting model