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Abstract—This paper addresses the issue of the propagation 
of electromagnetic waves radiated by HF antennas located in the 
vicinity of an infinite plane interface. This point is of major 
interest when dealing with over-the-horizon radar applications. 
Two numerical approaches aimed at the computation of the 
spatial electric field distribution radiated by typical HF antennas 
are described and compared.  

Index Terms— mixed potential equation; Sommerfeld 
integrals; near field to far field transformation; surface wave; sky 
wave;  

I.  INTRODUCTION 

HF over-the-horizon radars are observation tools used for 
the surveillance of large maritime zones. They can detect 
targets beyond the line-of-sight. There are two modes of wave 
propagation defining the so-called “sky-wave” HF radars and 
the “surface-wave” HF radars. The sky-wave mode is 
associated to a propagation by ionospheric reflection and the 
surface-wave mode to a propagation at the air - ground 
interface. Whatever the type of HF radar, these two modes 
coexist. Both are drastically influenced by the environment of 
the transmitting antennas and particularly by the 
electromagnetic properties of the ground upon which they are 
located. In consequence, the knowledge of the antenna 
radiation is of major interest in order to estimate the efficiency 
of the device in relation to the dedicated wave mode. 

As a characteristic example, the radiation of a vertical 
Hertzian dipole located on a half-space ground is studied. The 
distribution of the vertical component E of the electric field 
radiated by a Hertzian dipole placed and on a dry ground 
(r = 15,  = 0.05 S.m-1) is depicted, in Fig. 1, at two distances 
(1 km and 10 km) from the source. In that case, the working 
frequency is 3 MHz. The curves are compared with those 
corresponding to the perfect electric conductor (PEC) ground, 
considered as a reference, and independent of the distance. It 
appears that, in both cases, the surface wave is not negligible 
and vanishes at more or less large distance from the antenna, 
depending on the ground properties. In that sense, in HF band, 
it becomes impossible to define a unique far field pattern since 
it changes with the distance of observation. 

Two numerical methods aimed at the computation of the 
electric field radiated by typical HF antennas in the far zone 
have been developed and implemented. 

 

Figure 1.  Radiation of a vertical Hertzian dipole located on a dry land- 
the surface wave cannot be neglected 

The first part of this paper describes a method based on the 
resolution of the Mixed Potential Integral Equation (MPIE). 
The second part describes a method based on a near field to far 
field (NF/FF) transformation. The third one shows the 
comparison of these two approaches and concludes on their 
respective advantages. 

II. MIXED POTENTIAL INTEGRAL EQUATION 

The Electromagnetic Field Integral Equation (EFIE) technique 
is a very well suited technique for antenna analysis. It allows 
considering surfaces and wire elements, including dielectric 
parts as lenses or substrates. Using the method of moments, 
the analysis technique only considers interfaces between 
media. These interfaces are meshed into surface or wire 
elements which constitute the problem unknowns. 

The HF antennas problem brings one additional complexity 
to the problem. Taking the infinite interface into account 
requires modifying the EFIE. The new equation, named Mixed 
Potential Integral Equation (MPIE) [1], includes additional 
terms allowing to meet the boundary conditions on the 
interface. In the case of a metallic structure, the MPIE equation 
can be written as : 

     A        j        E  s   (1) 
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With for the vector potential 
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The normal to the interface is the z vector. In the above 
notation, u z 

  refers to the vertical (z) contribution of a dipole 
located in the horizontal (u) plane. The modified scalar 
potential and the relation between the potentials are the 
following : 
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All terms involved include the calculation of the 
Sommerfeld integrals. In this study these integrals are 
calculated using the complex image technique which allows 
separating the different contributions, in particular the one 
related to the surface wave [2]. 

The MPIE integral terms can be written in the general form as: 
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with n equal 0 or 1. A special case of these integrals 
corresponds to the following, known as the Weyl identity: 
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In the classical derivation of the problem as introduced by 
Sommerfeld [3], double derivatives with respect to the radial 
and vertical distances are introduced. This creates a difficulty 
when trying to implement this in a classical EFIE code with 
rooftop basis functions (both on wires and on surfaces). The 
calculation can be performed alternatively in the spectral 
domain. Taking space derivative into account increases the 
Bessel function order in the above integral and can be 
addressed more easily. 
 
Another benefit to perform the calculation in the spectral 
domain is the fact that it allows isolating the different 
contributions, then to subtract them from the integrand in 
order to get regular functions more suited to a numerical 
evaluation. There is one final additional benefit in this 
technique which consists in using the kz complex integration 
plane instead of the k complex plane. In the kz plane, a very 
simple linear integration contour can be defined making the 
calculation much easier to be carried out. 
 
Each F() integral is the sum of three contributions : 
 

 A quasi - dynamic contribution which corresponds to 
the value of f(k) when       k  . This value is 

subtracted from the integrand which is then equal to 0 
for high k values. The removed part contribution is 
calculated analytically.  

 A regular part approximated by a sum of exponential 
terms amenable to a sum of Weyl like identities with 
Ri as complex distances. 

 A pole contribution with extraction of the singular 
part replaced by the sum of residues contribution. 

 
This way to proceed is illustrated on figures 2 and 3. Figure 2 
shows the regular part behavior of some of the terms and their 
approximation by a sum of complex exponential terms. All 
terms exhibit a very fast decay and can consequently be easily 
evaluated. Figure 3 shows the weight of the different 
contributions depending on the radial distance between the 
source and observation points. This is however strongly 
dependent on the medium electrical constants.  
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Figure 2 : Regular terms behaviour along the contour in the kz complex plane 
and their approximation by a sum of complex exponential terms. Variable t is 
the coordinate along the integration contour 
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Figure 3 : the respective weight of the different contributions 

 
The extraction of the quasi dynamic and of the poles 
contributions is still amenable in the case of an arbitrary 
number of layers with dipoles (either surface elements or 
wires) located in the different media. 
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III. NEAR FIELD TO FAR FIELD TRANSFORMATION 

The second method is based on a source identification 
assuming that the antenna (or antenna network) under test 
(AUT) can be replaced by a set of equivalent dipoles radiating 
the same far field as the AUT [3]. This approach, based on the 
equivalence principle, has been already described by several 
authors [4, 5]. Nevertheless, the innovative point brought by 
this method is the use, as dipole’s radiation function, of the 
analytic formulations developped by Norton and extended by 
Bannister [6] to the very near field zone. These formulations 
include the sky wave as well as the surface wave contributions 
of the electromagnetic field radiated by each elementary dipole. 

Consider an AUT located at the plane horizontal interface 
between air and real ground. In a cylindrical coordinate system 
(, , z), the components of the electromagnetic field are 
measured in the near-field zone (in order to measure the 
surface wave) on a virtual surface SM surrounding the AUT. For 
convenience, we will first assume that SM is a cylindrical 
surface, of radius rSM and height hSM, centered on the AUT (see 
Fig. 4). The surface SM is meshed with a maximum spatial 
sampling step equal to /2, where  is the wavelength. The 
number of measured points is NM. 

 

Figure 4.  Geometry corresponding to the method 

Consider now a second virtual surface SD, included inside 
the surface SM. Also, for convenience, the surface SD is 
supposed to be a cylinder of radius rSD and height hSD, 
centered on the AUT (see Fig. 4). It is also meshed with a 
maximum spatial sampling step equal to /2. The number of 
mesh points is ND. At each point, three elementary electric 
dipoles are arranged in order to form an orthogonal basis 
aligned with the cylindrical basis vectors (see Fig. 5). 

The method states that, at each point of the surface SM, the 
electromagnetic field, is equal to the sum of all the 
contributions coming from each of the 3ND dipoles spread on 
the surface SD. This leads to the following matrix equations: 

ESM = DE . PSD 

HSM = DH . PSD 

(7)

(8) 

where ESM and HSM are respectively the electric and magnetic 
vectors of size 3NM, measured at each point on the surface SM. 
DE and DH are respectively the electric and magnetic radiation 
matrices (issued from the Norton/Bannister formulations), of 
size 3NM x 3ND, concerning the 3ND electric (horizontal and 

vertical) dipoles located at each point of the surface SD. PSD is 
the unknown vector, of size 3ND, containing the electric 
moments of the previous dipoles. 
 

 

Figure 5.  Arrangement of two horizontal (HED1 and HED2) and one 
vertical (VED) electric dipoles at each sampling point of the surface SD. 

Equations (7) and (8) can be written in the following 
reduced form 

(E_H)SM = DE_H . PSD (9)

and solved by inversion of the matrix DE_H in order to 
determine the vector PSD. 

The accuracy of the inversion is influenced by the number 
of dipoles contributing to the radiation. Particularly, it is 
necessary to unselect the dipoles which have a non-significant 
contribution to the total field. As a consequence, this inversion 
is carried out by applying a singular value decomposition 
(SVD) to the matrix DE_H associated with a threshold power 
criterion. This criterion represents the total power radiated by 
the AUT, in the near-field, and is calculated from the 
measurement of the electromagnetic field on the surface SM. 
Then the singular values matrix is scanned by decreasing order 
until the corresponding calculated power reaches this power 
criterion. Once the vector PSD is determined, the electric far 
field can be easily computed from the direct linear system (9). 

IV. ASSOCIATION OF THE METHODS AND RESULTS 

The methods have been tested and combined in order to 
study two types of typical HF antennas. 

 
The first example is a biconical HF antenna, depicted in 

figure 6, located on a dry ground (r = 13 and  = 0.05 S.m-1), 
operating at a frequency of 10 MHz. Figure 7 shows the near 
field pattern, computed by the MPIE method, in a 
200 m x 200 m vertical plane surface located at 30 m from the 
source in the horizontal direction. The sky-wave mode can be 
observed as well as the surface-wave mode that exhibits a peak 
value at the interface plane. Figure 8 depicts, in a vertical 
plane, the -component (magnitude and phase) of the electric 
field computed by the NF/FF transformation at an observation 
distance equal to 1 km. These far-field results are compared 
with the well-known code NEC/SOMNEC. The surface-wave 
is observable again for a value of the polar angle  close to 90°, 
even at large distance from the source. 
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Figure 6.  Antenna geometry: biconical antenna. 

 

 

Figure 7.  Magnitude of the electric field radiated in the near zone by the 
biconical antenna over a dry ground – f=10 MHz 

 
a. magnitude

 

b. phase

Figure 8.  Magnitude (a) and phase (b) of the -component of the electric 
field radiated by the biconical antenna at a distance R=1 km over a dry ground 

f=10 MHz 

The second example is about a three vertical quarter-
wavelength monopoles network, aligned along the y axis, as 
shown in figure 9, separated by a half-wavelength from each 
other, located on a sea water interface at 30 MHz operating 
frequency. 

 

Figure 9.  Antenna geometry: monopole network. 

Figures 10 and 11 show the near field pattern, computed 
by the MPIE method, on a 200 m x 200 m surface, 
horizontally located at 30 m from the source, in the =0° and 
=140° vertical planes, respectively. 

 

 

Figure 10.  Magnitude of the electric field radiated in the near zone by the 
monopole network over a sea water ground – f=30 MHz – vertical plane =0° 

 

Figure 11.  Magnitude of the electric field radiated in the near zone by the 
monopole network over a sea water ground - f=30 MHz -vertical plane 

=140° 

This configuration allows highlighting the effect of a 
rotationally nonsymmetrical radiation with respect to the 
azimuth angle  as well as a change of the ground electrical 
characteristics. 

Figure 12 depicts, in the vertical plane =0°, the -
component (magnitude and phase) of the electric field 
computed by the NF/FF transformation at an observation 
distance equal to 1 km. Figure 13 depicts, in the vertical plane 
=140°, the -component (magnitude and phase) of the 
electric field computed by the NF/FF transformation at an 
observation distance equal to 1 km.  
The results obtained for the magnitude of the main component 
E of the electric field in the far zone are in good agreement 
with the code NEC/SOMNEC, used as the reference one. 
Differences appear on the argument of the component. The 
method is more sensitive, from this point of view, to the high 
number of equivalent dipoles involving in the modeling of the 
AUT and combining each with the others.  

(30m ; 0) (230m ; 0) 

(230m ; 0) 

(V/m) 

(230m ; 200m) 

(V/m) 

(V/m) 

xy 

z 

7th European Conference on Antennas and Propagation (EUCAP 2013) - Convened Sessions

2619



 
a. magnitude

 

b. phase

Figure 12.  Magnitude (a) and phase (b) of the -component of the electric 
field radiated by the monopole network at a distance R=1 km over a sea water 

ground f=10 MHz – vertical plane =0° 

  
a. magnitude

 

b. phase

Figure 13.  Magnitude (a) and phase (b) of the -component of the electric 
field radiated by the monopole network at a distance R=1 km over a sea water 

ground f=10 MHz – vertical plane =140° 

V. CONCLUSION 

The analysis of antennas located in the vicinity of a lossy 
infinite interface has been presented. Two complementary 
techniques were developed allowing to consider a large 
number of complex environments. 

A numerical technique based on a solution of the electric 
field integral equations was developed. The algorithm allows 
considering infinite lossy interfaces as is the case for HF 
antennas and to separate the different contributions. It 
provides in particular the near field radiated by the antenna 
which was shown to exhibit the two contributions related to 
the surface wave and to the sky wave. 

The near field to far field transformation is specific in that 
case due to the presence of the interface. A dedicated 
algorithm was developed. It can take as an input either the 
theoretical results or the measurements. It also provides a hint 
for the measurement campaign, if any, to locate and / or 
minimize the number of measurements points. 

These two tools are combined for an accurate 
characterization of the antenna near field and far field 
distributions of particular interest for radar applications and 
complex environments such as the coastal region and ground – 
sea propagation for maritime surveillance purposes. 
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